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This article reports a characteristic crisis observed in a two-dimensional discontinuous and noninvertible
map. The discontinuity border in the definition range of the mapping oscillates as the discrete time progresses
so that the forward images of the border form a fat fractal. By choosing particular parameters the iterations on
the fat fractal display chaotic motion, and the transient iterations from the initial values in a certain region of
the phase space are attracted to the fat fractal. At a threshold of a control parameter an elliptic periodic orbit
and the elliptic islands around it suddenly appear inside the fat strange set so that the iterations on the set
escape to the islands. The fat chaotic attractor thus suddenly transfers to a fat transient set. The effect of the
feature of the crisis on the rule of the lifetime in the transient set is discussed. It shows that the dependence of
the lifetime on the control parameter follows a universal scaling law suggested by Grebogy, Ott, and Yorke
[Phys. Rev. Lett.57, 1284(1986)], and the scaling exponent can be approximated according to the variation
rules of the elliptic islands and the measure of the fat fractal. The strange repeller, which appears after the
crisis, is also a fat fractal.
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I. INTRODUCTION

Crisis, which is a common manifestation, means sudden
changes of chaotic attractors. Usually the mechanism of the
sudden change is the sudden appearance of a so-called es-
caping hole inside a chaotic attractor when a control param-
eter reaches a threshold value. As the control parameter
progresses, the hole gradually grows, from zero measure, so
that the motion in the attractor escapes faster[1–3]. In one of
the typical circumstances, in an everywhere smooth dissipa-
tive system, the chaotic attractor is the closure of the un-
stable manifold of a saddle node located in its basin bound-
ary. For a two-dimensional mapping system, the closure
forms a thin fractal with a Hausdorff dimension between 1
and 2. At the same time, the closure of the stable manifold of
the same saddle(in a homoclinic case) or another saddle(in
a heteroclinic case) forms the basin boundary of the chaotic
attractor. When the control parameter passes a threshold, the
unstable manifold crosses the stable one. Consequently the
small region surrounded by the crossing manifolds forms the
escaping hole. Based on this understanding Grebogy, Ott,
and Yorke deduced the universal scaling law[2] as

ktl ~ uA − Acu−n, s1d

where ktl denotes the averaged lifetime of the iterations in
the original chaotic attractor,A is the control parameter of
the system, andAc the threshold of the control parameter.
Grebogy, Ott, and Yorke proved that, in an everywhere
smooth and “exactly dissipative” mapping system, the scal-
ing exponent should take a value ofn=1/2 in a one-
dimensional case, and 1/2ønø3/2 in a two-dimensional

case, depending on the properties of the saddles[2]. There
are only a few observed crises that do not obey the scaling
law (1). References[3] and [4] may serve as two examples.

In recent years, piecewise continuous maps have attracted
much attention. Some different kinds of crises have been
observed in such systems[4–6]. Most of these crises obey
the scaling law(1) with scaling exponentsn between 1/2
and 3/2. However, the values do not depend on the proper-
ties of any saddle. The characteristics of the crises still de-
pend on escaping holes, but the mechanisms and forms of the
holes are very different. For example, the escaping hole in a
so-called hole-induced crisis[4,5] is a hole formed by a pair
of discontinuities, which suddenly appear at an extremum of
the system function. The escaping hole of the so-called
discontinuity-induced crisis can serve as another example
[6]. The hole is actually the distance between a discontinuity
of the system function, which confines the chaotic attractor,
and an unstable orbit located at the basin boundary of the
chaotic attractor. Some scientists also paid attention to piece-
wise continuous conservative systems[7–12]. Among them,
Hu et al. and Chenet al. discussed a system exemplified by
a particle in an infinite potential well subject to a periodic
kicking force [7,8]. We suggest calling special attention to
the crisis observed recently in so-called quasidissipative sys-
tems[9–12]. Such a system is described by a discontinuous
and noninvertible concatenation of two area-preserving
maps. The smooth borderline between the definition ranges
of the two submaps is addressed as the “discontinuity bor-
der.” In certain conditions two points in phase space may
merge into one during an iterating process according to dif-
ferent submaps, which induces a collapse of the phase space.
However, the phase space contraction rate is linear instead of
exponential, as occurs in conventional dissipative systems
[12]. In correspondence, the nonasymptotic phase space col-
lapse in quasidissipative systems often is finite. The itera-
tions started from some initial points often enter into elliptic
islands, which have finite measures, after a finite time period.
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An infinitely long iteration trajectory often is dissipative only
at the beginning before a time threshold, and becomes con-
servative after it. This fact shows that the kind of dissipative
behavior can also produce regular attractors, which usually
take the form of elliptic islands. A crisis happens when some
elliptic islands, which attract iterations, suddenly appear in-
side a chaotic attractor[11,12].

Mira has analytically proved[13] that in certain kinds of
two-dimensional piecewise continuous noninvertible maps,
like the system to be discussed in this article, the chaotic area
is bounded by segments of images of the discontinuity bor-
derlines. If the border is a smooth line in the definition range,
the set of the images of the borderline forms a thin fractal
with a Hausdorff dimension between 1 and 2 when the num-
ber of images tends to infinite. As a result the chaotic motion
is confined in the fractal in this case. After a crisis occurring
in a quasidissipative mapping, the chaotic attractor appears,
which is formed by the borderline image set.

After all of the aforementioned crises, the backward im-
age set of the escaping hole cuts out nearly all the points of
the original chaotic attractor. The remnants form a fractal set
with a Hausdorff dimension smaller than that of the original
attractor. The set is addressed as a chaotic saddle[1,14] or a
strange repeller[15]. Trajectories starting from points of a
strange repeller never leave the repeller and exhibit chaotic
motion forever. It is, however, completely unlikely to hit
such a point by random choice since the repeller is a set of
zero measure and is globally not attractive. What is observ-
able experimentally is not the repeller itself but rather a
small neighborhood of it. Trajectories starting close to the
repeller can stay for a long time in its neighborhood and
show chaotic properties, but sooner or later they escape.
Therefore a chaotic saddle or strange repeller leads to tran-
sient chaos. The averaged lifetime of the chaotic transient
can be arbitrarily long in some circumstances. In a low di-
mensional chaotic system so-called supertransients, meaning
that the averaged lifetime is arbitrarily large, usually only
occur in an arbitrarily small parameter interval in the vicinity
above the crisis threshold[1,16]. In contrast, Crutchfield and
Kaneko discovered that in spatiotemporal chaotic systems
supertransients occur commonly in substantial portions of
the parameter space[17,18]. Lai and Winslow demonstrate
that this fact is due to nonattracting chaotic saddles whose
stable manifold measures have fractal dimensions that are
arbitrarily close to the phase space dimension[16]. We may
say that the chaotic saddle’s stable manifolds are arbitrarily
close to fat fractals. Properties of chaotic saddles or strange
repellers and chaotic transients are important physical quan-
tities in practical fields, such as controlling chaos[19] and
sustaining chaos[20].

In this article we suggest a different mechanism that may
also produce supertransients. For this we shall report a
sample crisis, which leads to supertransients by the mecha-
nism, and then argue that the mechanism may be widely
observed. The paper is organized as follows. The system is
described in Sec. II. The crisis is discussed in Sec. III where
a fat chaotic attractor and its sudden vanishing are discussed
in Sec. III A, our analytic discussion about the lifetime scal-
ing law is introduced in Sec. III B, and the numerical verifi-
cation is introduced in Sec. III C, and the strange repeller and

its variation as the control parameter changes are described
in Sec. III D. A summary and discussion are presented in the
last section.

II. THE SYSTEM

The kicked rotor is a widely used theoretical model that
displays important features such as onset of chaos, phase
locking, and so on. Schuster showed that the differential
equations which describe the motion of the system can be
reduced to a two-dimensional map. Taking different limits,
the map can change to some famous models, such as the
logistic map, the Hénon map, and the standard map
(Chirikov-Taylor map) [21]. The last one, the standard map,
may be the simplest paradigm to show the basic characteris-
tics of chaotic motion in a conservative system. In 1979,
Chirikov derived the standard map by considering the mo-
tion of a charged particle in a magnetic bottle[22]. In 1997
Blumel and Reinhardt suggested a much simpler experimen-
tal setup for realization of a kicked rotor. They considered a
two-dimensional dipole, which is driven by an electric field
generated by a special zero-width pulse generator, and again
derived the standard map[23]. The standard map can be
derived through very different physical models. For example,
Wanget al.derived it by considering an electronic relaxation
oscillator [9]. In the following we shall discuss a two-
dimensional map that is a discontinuous and noninvertible
concatenation of two standard maps in different forms. A
special kind of kicked rotor is considered only as one of the
possible backgrounds of the map. Similar maps with similar
important features may be derived in other ways.

Similar to the systems discussed in[7,8,12], we consider a
kicked rotor, in which a classical particle moving without
friction along a unit circle is subjected to a periodic impul-
sive force of impulse strengthK. As shown in Fig. 1, the
direction of the force is parallel to the diameter that connects
two positionsu=0 andu=p, whereu denotes the angular
position of the particle. The periods of the impulses,Ti si
=1,2d, are different in the definition rangeu[ s0,ag (for T1)
and u[ sa ,2pg (for T2). Along the tangent direction of the
circle, the impulsive forces can be expressed as

F1t = sK sinuddT1
std s0 , u ø ad,

F2t = sK sinuddT2
std sa , u ø 2pd, s2d

wheredTi
=on=−`

` dst−nTid. With some kinds of technologies
(for example, in the driven two-dimensional dipole model

FIG. 1. A schematic drawing to show the system.
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suggested by Blumel and Reinhardt[23] the frequency of the
zero-width pulse generator can be controlled by a modern
electronic device), the particle can be tracked so that after
subjection to anFi impulse, the next impulse applies only
after Ti time duration whether or not it crosses the disconti-
nuity border. This means that the system has a type of
“memory” so that the particle may make a free motion in a
time duration longer thanT2 in u[ sa ,2pg if T2,T1, and
vice versa. For example, ifT2=T1/2, after last kicking at a
position near to the borderu=a in the upper semicircle, the
particle will make a free motion in aT1 time duration even if
it moves, after crossing the border, inu[ sa ,2pg longer then
T1/2.

By integrating the impulse along the tangent direction of
the circle and the angular momentum of the moving particle
from just before thenth kick to just before thesn+1dth kick,
one gets

H un+1 = un + In+1 smod 2pd
In+1 = In + k sinun

J if 0 , un ø a, s3d

H un+1 = un + bIn+1 smod 2pd
In+1 = In + k sinun

J if a , un ø 2p, s4d

where I =pT1/m, k=KT1/m, b=T2/T1, p denotes the mo-
mentum along the tangent direction of the circle, andm de-
notes the mass of the particle. In the current study we define
a=p+A cossvnd; this means that the discontinuity border
oscillates as the discrete time advances. Whenb=1, maps
(3) and (4) are piecewise continuous, conservative, and in-
vertible. WhenbÞ1, the maps become noninvertible and
quasidissipative as explained in the first section.

One can easily verify that both the submaps(3) and (4)
are area preserving. Also their inverse maps can be deduced
easily as

H un = un+1 − In+1 smod 2pd
In = In+1 − k sinun

J if 0 , un ø a, s5d

H un = un+1 − bIn+1 smod 2pd
In = In+1 − k sinun

J if a , un ø 2p. s6d

Please note that in order to find an inverse imagesun,Ind, the
principal for selecting Eq.(5) or Eq. (6) depends on the
position un instead ofun+1. This leads to the possibility of
finding two sun,Ind points for the samesun+1,In+1d according
to the different inverse mapping form. This is the so-called
noninvertibility induced by discontinuity, which is the source
of the quasidissipative property.

There are two discontinuity borderlineshusu ,Iduu=0j and
husu ,Iduu=aj in maps(3) and (4). The second one is a linear
line that can take values continuously in the area
husu ,Iduu[fp−A,p+Agj so that the border image set forms a fat
fractal.

The fixed-point solutions of maps(3) and (4) are

H I * = 0

u * = p
J when 0, un ø a, s7d

H I * = 0

u * = 2p
J whena , un ø 2p. s8d

In the definition ranges0,ag it exists and is stable when
A=0 and us2−k±Îk2−4kd /2uø1 while in sa ,2pg it exists
and is stable whenuf2+bk±Îbksbk+4dg /2uø1.

One has to discuss the period-2 orbits of maps(3) and(4)
for different situations. If both the periodic points are located
in s0,ag, the solution satisfies

I1 = s2n + 1dp,

u1 = arcsinS− 2s2n + 1dp
k

D , s9d

I2 = I1 + k sinu1,

u2 = u1 + I2, s10d

wheren takes values 0, 1, 2,…. If both the periodic points
are located insa ,2pg, the solution satisfies

I1 =
s2n + 1dp

b
,

u1 = arcsinS− 2s2n + 1dp
bk

D , s11d

I2 = I1 + k sinu1,

u2 = u1 + bI2, s12d

where n takes values 0, 1, 2,…. If one periodic point is
located ins0,ag, and another is located atsa ,2pg (the orbit
can be addressed as an “orbit crossing border”), the solution
satisfies

sb + 1dsI1 + k sinu1d + bk sinsu1 + I1 + k sinu1d = 2p,

u1 = np +
bI1

2
, s13d

I2 = I1 + k sinu1,

u2 = u1 + bI2, s14d

wheren takes values 0, 1, 2,… .
In this article, we only discuss the situation where the

parameters are fixed ask=0.3,b=0.1, andv=1. The control
parameter is the amplitude of the oscillation of the disconti-
nuity border,A. It is easy to deduce that the fixed point
described by Eq.(7) exists only ifA=0, but it is unstable; the
fixed point described by Eq.(8) always exists, and also is
unstable; both of the periodic orbits described by Eqs.(9),
(10), (11), and(12) do not exist; the only existing and stable
periodic orbit is that described by Eqs.(13) and (14). There
are many such periodic orbits, described by differentn, in
the phase space. We shall study only the casen=1. The
expression of the orbit can be solved as
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u1 . 2.852 10,

I1 . 5.704 20, s15d

u2 . 3.431 08,

I2 . 5.789 84. s16d

Figure 2 shows the “elliptic islands” around the periodic
points. It is drawn by evenly selecting 40355 initial values
in the areau[ f0,2pg, I [ f5.3,6.1g (inside the basin of this
orbit), ignoring the first 30 iterations from each initial point,
and then recording 100 iterations. The picture shows that the
“elliptic island chain” is the attractor in part of phase space
due to the fact that it attracts the iterations from all the initial
points. In the following sections we shall select different
suitable areas for initial values for similar reasons and shall
not explain them again.

III. THE CRISIS

A. The fat strange set

As can be understood by Fig. 2, the elliptic islands
become smaller and smaller with increasingA. All the el-
liptic orbits colliding with the oscillating border are de-
stroyed. Finally, the border collides with one of the periodic
points at A=Ac (it can be analytically shown that
0.289 49.Ac.0.289 48). As a result, the regular motion to-
tally disappears. Numerical investigation(see Fig. 3) shows
that a chaotic attractor suddenly emerges. This sudden
change can be addressed as a kind of crisis.

As stated in the first section, the set of forward images of
the discontinuity border forms the chaotic attractor. Figure 4
shows the first, second, 20th, 100th, and 1000th to 6000th
orders of images of the discontinuity borderlinehusu ,Iduu=aj.
One can see that the border image splits and bends again and
again during the iteration process, and gradually demon-
strates the form of a fat strange set. If the border were one(or
two) fixed linear line(s), the image set would have been a
thin fractal. However, in the current system one of the bor-

derlines husu ,Iduu=aj changes its position in the region
u[ fp−A,p+Ag continuously. Since the periods2pd of the
functiona=p+A cossvnd is an irrational number, the border
should perform an ergodic motion in this rectangular area.
This is why one can expect that the image set forms a fat
fractal. This conclusion should be verified by some numeri-
cal proofs, which will be presented in the following.

First, if the image set is a fat fractal, when one selectsm
initial values evenly on the borderhusu ,Iduu=aj and computes
l orders of images from each initial value, one certainly finds
that the whole image set has a Hausdorff dimensionDf =2
(the dimension of the phase space where it is embedded)
with a good enough computational resolution andm→`, l
→`. To verify this conclusion numerically, we computed the
Hausdorff dimension of the fat strange set shown by Fig. 3
by using the traditional box-counting method. The phase
space shown in the figure was divided into 4003400
squares. We took the size of one square as the smallest scale
l. The number of points showing the strange set is about 100
times the number of squares. When we increase the scale, the
number of boxes occupied by the fractal,N, showed a very
good linear line on the lnl-ln N plane. The slope of the line
was 2±5310−16. Therefore, the Hausdorff dimension is not
a good quantity to describe the border image set here. One
has to introduce a different quantity that is suitable for both
the thin and fat fractals. It is called the “fractal exponent”
and is defined as[24–26]

b = lim
j→0

lnumsAjd − m0u
ln j

, s17d

wherej denotes the scale,Aj represents the coarse set of the
fat fractal underj (this means the remnant after wiping off
all the holes larger thanj), msAjd represents the Lebesque
measure ofAj, and m0 the limit of msAjd when j→0, i.e.,
m0= limj→0msAjd. Figure 5 shows the computation of the
fractal exponent for the fat strange set shown in Fig. 3. One
can see a good scaling-free region in the figure. The fractal
exponent is then obtained asb=0.414±0.006.

When the fat fractalAj gradually changes to a thin one,
one should findum0uthin= limj→0musAjduthin=0 [25,26]. As is
well known [25], in this case one findsmsAjd=jb=jD−Df,
whereD is the dimension of the space where the fractal is

FIG. 2. The elliptic islands around the period-2 orbit. The ver-
tical linear line denoted byp represents the discontinuity borderline
husu ,Iduu=aj at A=0. The line denoted byp−Ac represents one of the
two end positions of the borderline atA=Ac, when it collides with
one of the elliptic points.

FIG. 3. The chaotic attractor atA=0.289 49. It is drawn by
selecting evenly 535 initial values in the areauP sp−A,p+Ad,
I P s5.3,6.1d, ignoring the first 300 000, and then recording 5000
iterations.
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embedded,Df denotes the Hausdoff dimension of the thin
fractal. In the current system, whenA=0, the border does not
oscillate. It can be expressed asa=p. The fat fractal set
changes to a thin one. We should findb+Df =2. This is the
second and most important proof for the fat strange set. We
also numerically verified this conclusion. By using a similar
method, we computed the Hausdorff dimension of the fat
strange set atA=0, which now transfers to a transient set,
and obtainedDf =1.226±0.016. The fractal exponent of the
set is found to beb0=0.77±0.02. So the results show a good
agreement with the conclusionb+Df =2.

B. An analytical discussion of the lifetime scaling law

We have reported a conclusion elsewhere[12] that in a
quasidissipative system, due to the dissipative behavior

showing a linear time dependence, the phase space contrac-
tion rate does not influence the scaling exponent of crises
and thus one can approximate the lifetime scaling law for a
crisis based only on the formula

ktl ~
1

rD
, s18d

whereD denotes the measure of the escaping hole, which is
the area of the elliptic islands in the current study, andr
denotes the probability of visiting a unit area inD. In the
present situation the area of the elliptic islands, which are
escaping holes, increases due to the fact that a linear line[the
discontinuity borderlinehusu ,Iduu=aj], which should be tan-
gent to the islands all over the process, moves away from
them asA becomes smaller. We have numerically verified
and confirmed the obvious conclusion

D ~ sAc − Ad2. s19d

If the strange set from which iterations escape via a leaking
hole is a thin fractal, it has a zero measure. The part of the
strange set insideD is very uneven no matter how smallD is.
Usually, one has to calculate the dependence of very uneven
r on uA−Acu numerically. We shall discuss the reason further
below. However, in the current study, the strange set is a fat
fractal with a finite measure, we may prove that the part of
the strange set insideD is even whenD is small enough and
make a further estimation on the scaling exponent based on
this fact.

The “density” of a fractalF at a pointx can be defined as
[27]

M = lim
g→0

area„F ù Bgsxd…
area„Bgsxd…

, s20d

whereBgsxd is a closed disk with radiusg and a center atx,
and area( ) represents the measure of the set in the paren-
theses. It has been proven[27] that M =1 if x[F, and M
=0 if x¹F, when F has an integer dimension, whileM is
smaller than 1 and depends on the Hausdorff dimension ofF
if it is a thin fractal. The Hausdorff dimension of the thin
fractal strange set should vary when the parameter changes.
That is why an estimation ofr is difficult if we suppose that
it is proportional to the fractal densityM of the strange set.

FIG. 4. (a) The linear line 1 represents the first image of the
discontinuity borderhusu ,Iduu=aj. It is drawn by selecting evenly
5000 initial values in the regionu=p+A, I P s4.5,7d, and recording
the first iteration from each of them. Two linear lines, denoted by 2,
represent the second images of the border. The drawing method is
similar so we shall not explain it in the following. The small gray
segments represent the 20th images, and the small gray pieces rep-
resent the 100th images. They already roughly resemble the fat
strange set shown in Fig. 3.(b) The composition of 1000, 2000,
3000, 4000, 5000, and 6000 order images of the discontinuity bor-
der. It already has a very similar form to the strange set shown in
Fig. 3, and has a tendency to show a form of composition of small
pieces. In order to compare with Fig. 3, all the computations are
performed with parameter value atA=0.289 49.

FIG. 5. The computation of the fractal exponent of the fat
strange set shown in Fig. 3. The largest value ofj is 0.0667. Its
smallest value is 0.0143,m0=0.003 35. Bothm andj have arbitrary
square or length units.
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However, for the fat strange setF, when uA−Acu→0, D al-
most always falls in a piece of the set which has a dimension
2, i.e.,D[F; thereforer=1 should be measured. That means
the visiting probability should be 100% as soon as iteration
enters the fat strange set. With this conclusion and Eqs.(18),
(19) one can expect to observe the universal power law ex-
pressed by Eq.(1) with an extremely large scaling exponent
n=2. As discussed in Ref.[28], a largern makes the chaotic
transient phenomena somewhat easier to observe. Therefore
one can expect a superlong chaotic transient after the crisis.

C. The numerical verification of the lifetime scaling law

Figure 6 shows our computational results for the averaged
lifetime, by using the method

ktl = lim
n→`

oi=1

n
ti

n
, s21d

wheren denotes the number of initial values evenly chosen
in areau[ f2,4g, I [ f5.1,6.3g (here n=1003100), and ti

denotes the number of iterations before entering the elliptic
islands from initial valuei. The linear line in the figure rep-
resents the least squares fitting of the data. Its slope is the
exponent of the scaling law, which showsn=1.72±0.04.

Our task now is finding an explanation of the difference
between the analytically predicted scaling exponentn=2 and
the numerical result. We would like to make a guess. Al-
though we obtain the conclusion that the probability of the
iterations visiting the escaping hole should be 100% as soon
as the iteration enters the fat strange set, we may have to
consider the probability of the iterations visiting the fat
strange set since it does not occupy the whole phase space.
When the parameterA progresses, the averaged lifetimektl
should be longer ifm, the measure of the strange set at pa-
rameter valueA, decreases since it takes a longer time for
iterations to enter the strange set. We suppose thatktl is
proportional to smc−md (mc is the measure at the crisis
threshold). This variation influences the scaling exponent
only if the dimensionless parameter%=smc−md /mc, the ratio
of the measure’s change, obeys a power dependence on the
parameterAc−A. Usually it is impossible to make an analytic
discussion of this guess because the measure’s change sensi-
tively depends on the system function and parameters. We
have to verify it numerically.

Figure 7 shows our numerical results about the depen-
dence ofmc−m on Ac−A. It shows a power law:

smc − md ~ sAc − Ad−0.27±0.01. s22d

Then we can reach agreement with the numerical result for
the scaling exponent if we suggest a different formula for the
estimation of the lifetime scaling exponent:

ktl ~
%

rD
. s23d

D. The strange repeller and its fractal exponent

How to show a strange repeller in a figure has been a
research subject in nonlinear dynamics. In the current study
we use a rather simple method, the “single trajectory
method,” which was suggested by Tél in 1991[15]. Figure 8
shows a strange repeller that is drawn with the parameter
value atA=0.20 in the following way: from a lot of initial
values (as many as possible; here the number is 1000

FIG. 6. This figure shows the numerically obtained relationship
between the average lifetimektl and the controlling parameter.

FIG. 7. This figure shows the numerical results about the depen-
dence ofmc−m on Ac−A. The method is as follows. For eachA
value, select evenly 1003100 initial values in the areau
P f0,2pg, I P f5.3,6.1g, record all the transient iterations(those be-
fore entering the elliptic islands), and then use the data for comput-
ing the Hausdorff dimension of the transient set by the box-
counting method. Choose the measure value at the smallest scale in
the scale-free region as the measure of the transient strange set,m.
Only the measure values corresponding to six parameter values
were computed since the computation needs a lot of time. The
threshold value of the measure was taken asmc=0.003 86 whenA
=Ac=0.289 492. It was obtained by considering the fact that the
fractal exponent of the set isb=0.414 atA=Ac=0.289 492.A is
dimensionless.m has arbitrary square units.

FIG. 8. The strange repeller atA=0.2.
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31000), selecting those that show lifetimes 15 times longer
than the averaged lifetimektl, and then recording the tran-
sience which started from them but ignoring the first 20% to
avoid the “memory of the initial condition” and the last 40%
to avoid getting too near to the new attractor, the elliptic
islands. The recorded middle part of the transient can ap-
proximately show the strange repeller as explained in the
first section. We compute the fractal exponentsb of some
strange repellers in the parameter rangeA[ f0.055,0.275g
and show the data in Fig. 9. In the computation for each of
them, the smallest value ofj is 0.0143, the largest value is
0.0667, and 55 values ofj in total are evenly taken between
them. For different values ofA, m0 takes different values as
well. They are m0sA=0.055d=0.001 13; m0sA=0.11d=0.001 45;
m0sA=0.2d=0.001 85; m0sA=0.21083d=0.002 18; m0sA=0.275d
=0.003 15. The results show that the fractal exponents are
increasing with decreasingA with the rule

b = − s0.0955 ± 0.0015dlnsAc − A + 0.000 26d. s24d

These results demonstrate that the strange repellers are also
fat fractals. This can explain the superlong transience(longer
than 63105) observed whenuA−Acu→0. Obviously the su-
pertransients occur in a portion of the parameter space that is
much larger than what can be observed after a crisis induced
by an escape from a thin strange set.

IV. CONCLUSION AND DISCUSSION

The system discussed in this article is described by a two-
dimensional mapping. Two linear lines in the definition range

of the system divide the range into two parts as shown in Fig.
1. The function is different in each part. One of the border-
lines is fixed; the other oscillates with a certain amplitude.
This mechanism makes the chaotic set of the borderline im-
age become a fat fractal. Due to the quasidissipative property
of the system, a zero-size elliptic island chain appears inside
the chaotic set at a threshold value of the control parameter.
The island chain gradually grows and serves as an escaping
hole so that the chaotic set transfers to a transient set. The
characteristic of this crisis is an escape from a fat fractal set.
We have analytically and numerically shown that the scaling
exponent of the lifetime takes a value of 1.73. The method
for the estimation of the exponent is unique.

The crisis reported in this paper is only an example to
show that a kind of crisis induced by an escape from a fat
strange set can be observed, and this can display a different
mechanism to produce supertransients. The key point is that
the strange repeller, which appears after such a crisis, is also
a fat fractal. Therefore the iterations have a much larger
probability than that in the thin fractal case to fall in the
vicinity of the strange repeller. We believe there should be
more mechanisms to realize this kind of crisis, not only in
two-dimensional discontinuous and noninvertible maps.
Also, the mechanism reported in this paper certainly can be
observed in more physical systems, which can show an os-
cillation of a discontinuous borderline and thus form a fat
strange set. The electronic relaxation oscillator reported in
Ref. [9] and the so-called kicked billiard model[29] might
serve as other candidates. So we believe that the mechanism
for producing supertransients is common.
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