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Crisis induced by an escape from a fat strange set
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This article reports a characteristic crisis observed in a two-dimensional discontinuous and noninvertible
map. The discontinuity border in the definition range of the mapping oscillates as the discrete time progresses
so that the forward images of the border form a fat fractal. By choosing particular parameters the iterations on
the fat fractal display chaotic motion, and the transient iterations from the initial values in a certain region of
the phase space are attracted to the fat fractal. At a threshold of a control parameter an elliptic periodic orbit
and the elliptic islands around it suddenly appear inside the fat strange set so that the iterations on the set
escape to the islands. The fat chaotic attractor thus suddenly transfers to a fat transient set. The effect of the
feature of the crisis on the rule of the lifetime in the transient set is discussed. It shows that the dependence of
the lifetime on the control parameter follows a universal scaling law suggested by Grebogy, Ott, and Yorke
[Phys. Rev. Lett.57, 1284(1986)], and the scaling exponent can be approximated according to the variation
rules of the elliptic islands and the measure of the fat fractal. The strange repeller, which appears after the
crisis, is also a fat fractal.
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I. INTRODUCTION case, depending on the properties of the saddgsThere
are only a few observed crises that do not obey the scaling

Crisis, which is a common manifestation, means sudderpaW (1). Reference$3] and [4] may serve as two examples.
changes of chaotic attractors. Usually the mechanism of the In recent years, piecewise continuous maps have attracted

sudden change is the sudden appearance of a so-called &S;ch attention. Some different kinds of crises have been
caping hole inside a chaotic attractor when a control paramgpserved in such systenfié—6]. Most of these crises obey
eter reaches a threshold value. As the control parametghe scaling law(1) with scaling exponents between 1/2
progresses, the hole gradually grows, from zero measure, $hd 3/2. However, the values do not depend on the proper-
that the motion in the attractor escapes faftef]. In one of  ties of any saddle. The characteristics of the crises still de-
the typical circumstances, in an everywhere smooth dissipgsend on escaping holes, but the mechanisms and forms of the
tive system, the chaotic attractor is the closure of the unholes are very different. For example, the escaping hole in a
stable manifold of a saddle node located in its basin boundso-called hole-induced crisjg,5] is a hole formed by a pair
ary. For a two-dimensional mapping system, the closuref discontinuities, which suddenly appear at an extremum of
forms a thin fractal with a Hausdorff dimension between 1the system function. The escaping hole of the so-called
and 2. At the same time, the closure of the stable manifold ofliscontinuity-induced crisis can serve as another example
the same saddlgn a homoclinic caseor another saddlén [6]. The hole is actually the distance between a discontinuity
a heteroclinic cageforms the basin boundary of the chaotic of the system function, which confines the chaotic attractor,
attractor. When the control parameter passes a threshold, tR@d an unstable orbit located at the basin boundary of the
unstable manifold crosses the stable one. Consequently ti§@aotic attractor. Some scientists also paid attention to piece-
small region surrounded by the crossing manifolds forms th&/iSe continuous conservative systeffis12. Among them,
escaping hole. Based on this understanding Grebogy, Ott'u et al. and Cheret al. discussed a system exemplified by

and Yorke deduced the universal scaling lEg¥ as a particle in an infinite potential well subject to a periodic
kicking force [7,8]. We suggest calling special attention to
(1) |A=A]™, (1) the crisis observed recently in so-called quasidissipative sys-

tems[9-17. Such a system is described by a discontinuous
and noninvertible concatenation of two area-preserving

tﬂe original chaot|chattractoﬁ Ilfj thf ﬁontrol pairameter of maps. The smooth borderline between the definition ranges
the system, and\, the threshold of the control parameter. of the two submaps is addressed as the “discontinuity bor-

Grebogy, 2’& andl Yg.fke. pr_ov?d that., In-an evergwhertlader_,, In certain conditions two points in phase space may
smooth and “exactly dissipative™ mapping system, the scalq,q e into one during an iterating process according to dif-

Ing exponent should take a valug 0=1/2 N aoné-  farent submaps, which induces a collapse of the phase space.
dimensional case, and 1#2v<3/2 in a two-dimensional ;.\ ever, the phase space contraction rate is linear instead of
exponential, as occurs in conventional dissipative systems
[12]. In correspondence, the nonasymptotic phase space col-
* Author to whom correspondence should be addressed. Addreskpse in quasidissipative systems often is finite. The itera-
College of Physics Science and Technology, Yangzhou Universitytions started from some initial points often enter into elliptic
Yangzhou, China 225002. islands, which have finite measures, after a finite time period.

where(7) denotes the averaged lifetime of the iterations in
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An infinitely long iteration trajectory often is dissipative only

at the beginning before a time threshold, and becomes con-
servative after it. This fact shows that the kind of dissipative
behavior can also produce regular attractors, which usually
take the form of elliptic islands. A crisis happens when some
elliptic islands, which attract iterations, suddenly appear in-
side a chaotic attractddl1,12.

Mira has analytically provegi13] that in certain kinds of
two-dimensional piecewise continuous noninvertible maps,
like the system to be discussed in this article, the chaotic area
is bounded by segments of images of the discontinuity bor-
derlines. If the border is a smooth line in the definition range,

the set of the images of the borderline forms a thin fractal - .
with a Hausdorff dimension between 1 and 2 when the numits variation as the control parameter changes are described

ber of images tends to infinite. As a result the chaotic motior{? Sec- Il D. A summary and discussion are presented in the
is confined in the fractal in this case. After a crisis occurringlast section.
in a quasidissipative mapping, the chaotic attractor appears,

which is formed by the borderline image set.

After all of the aforementioned crises, the backward im- The kicked rotor is a widely used theoretical model that
age set of the escaping hole cuts out nearly all the points dlisplays important features such as onset of chaos, phase
the original chaotic attractor. The remnants form a fractal sefocking, and so on. Schuster showed that the differential
with a Hausdorff dimension smaller than that of the originalequations which describe the motion of the system can be
attractor. The set is addressed as a chaotic sddidld] or a  reduced to a two-dimensional map. Taking different limits,
strange repellef15]. Trajectories starting from points of a the map can change to some famous models, such as the
strange repeller never leave the repeller and exhibit chaotipgistic map, the Hénon map, and the standard map
motion forever. It is, however, completely unlikely to hit (Chirikov-Taylor map [21]. The last one, the standard map,
such a point by random choice since the repeller is a set ahay be the simplest paradigm to show the basic characteris-
zero measure and is globally not attractive. What is observtics of chaotic motion in a conservative system. In 1979,
able experimentally is not the repeller itself but rather aChirikov derived the standard map by considering the mo-
small neighborhood of it. Trajectories starting close to thetion of a charged particle in a magnetic bott®2]. In 1997
repeller can stay for a long time in its neighborhood andBlumel and Reinhardt suggested a much simpler experimen-
show chaotic properties, but sooner or later they escapeal setup for realization of a kicked rotor. They considered a
Therefore a chaotic saddle or strange repeller leads to tramwo-dimensional dipole, which is driven by an electric field
sient chaos. The averaged lifetime of the chaotic transiengenerated by a special zero-width pulse generator, and again
can be arbitrarily long in some circumstances. In a low di-derived the standard maj23]. The standard map can be
mensional chaotic system so-called supertransients, meaningrived through very different physical models. For example,
that the averaged lifetime is arbitrarily large, usually only Wanget al. derived it by considering an electronic relaxation
occur in an arbitrarily small parameter interval in the vicinity oscillator [9]. In the following we shall discuss a two-
above the crisis thresho[d,16]. In contrast, Crutchfield and dimensional map that is a discontinuous and noninvertible
Kaneko discovered that in spatiotemporal chaotic systemsoncatenation of two standard maps in different forms. A
supertransients occur commonly in substantial portions o§pecial kind of kicked rotor is considered only as one of the
the parameter spadé7,1§. Lai and Winslow demonstrate possible backgrounds of the map. Similar maps with similar
that this fact is due to nonattracting chaotic saddles whos@mportant features may be derived in other ways.
stable manifold measures have fractal dimensions that are Similar to the systems discussed 8,13, we consider a
arbitrarily close to the phase space dimendib8]. We may  kicked rotor, in which a classical particle moving without
say that the chaotic saddle’s stable manifolds are arbitrarilyriction along a unit circle is subjected to a periodic impul-
close to fat fractals. Properties of chaotic saddles or strangsive force of impulse strengtk. As shown in Fig. 1, the
repellers and chaotic transients are important physical quantirection of the force is parallel to the diameter that connects
tities in practical fields, such as controlling chgd®] and  two positions§=0 and 6=, where 6 denotes the angular
sustaining chaof20]. position of the particle. The periods of the impulsés(i

In this article we suggest a different mechanism that may=1,2), are different in the definition rangg= (0,«] (for T;)
also produce supertransients. For this we shall report and g€ («, 2] (for T,). Along the tangent direction of the

sample crisis, which leads to supertransients by the mechaircle, the impulsive forces can be expressed as
nism, and then argue that the mechanism may be widely

FIG. 1. A schematic drawing to show the system.

Il. THE SYSTEM

observed. The paper is organized as follows. The system is Fi,=(Ksing)sr (1) (0<b6=<a),
described in Sec. II. The crisis is discussed in Sec. Ill where
a fat chaotic attractor and its sudden vanishing are discussed F,,=(Ksing) 5T2(t) (a< 6<2m), (2)

in Sec. Il A, our analytic discussion about the lifetime scal-
ing law is introduced in Sec. Ill B, and the numerical verifi- where 8p =X _ . &(t-nT,). With some kinds of technologies
cation is introduced in Sec. lll C, and the strange repeller angfor example, in the driven two-dimensional dipole model
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suggested by Blumel and Reinhaf@8] the frequency of the [*=0

zero-width pulse generator can be controlled by a modern 0% =20 whena < 6, < 27. (8)
electronic devicg the particle can be tracked so that after

subjection to arnF; impulse, the next impulse applies only  In the definition rangd0,«] it exists and is stable when
after T; time duration whether or not it crosses the disconti-A=0 and |(2-k+ k?*-4k)/2|<1 while in (a,27] it exists
nuity border. This means that the system has a type oénd is stable whefj2+gk+ VBK(Bk+4)]/2|<1.

“memory” so that the particle may make a free motion in a  One has to discuss the period-2 orbits of méhsand(4)
time duration longer thaf, in 6€ (a,2w] if T,<Ty, and  for different situations. If both the periodic points are located
vice versa. For example, ,=T,/2, after last kicking at a in (0,a], the solution satisfies

position near to the bordeéi=« in the upper semicircle, the

particle will make a free motion in &; time duration even if l;=(2n+ )7,
it moves, after crossing the border, @€ («, 27] longer then
T,/2. [=2(2n+ )
By integrating the impulse along the tangent direction of 6, =arcs| K ' 9

the circle and the angular momentum of the moving particle
from just before thenth kick to just before thén+ 1)th kick,
one gets
Op1=6,+ 10 (Mmod 2m) £0 < g = @ b2= 61+ 15, (10)
i <
lhe1=1,+tksin g, @ wheren takes values 0, 1, 2,. If both the periodic points
are located in«, 27], the solution satisfies
2n+ 1)
I]_ = B

|2=|1+ kSinﬁl,

if a<6,<2m, (4)

One1= On+ Blner  (Mod 2m)
1=, tksing,

where | =pT;/m, k=KT,/m, B=T,/T;, p denotes the mo-

mentum along the tangent direction of the circle, amde- 6. = arcsir<_ 2(2n+ 1)77) (11)
notes the mass of the particle. In the current study we define ! Bk '
a=m+Acogwn); this means that the discontinuity border

oscillates as the discrete time advances. WBerl, maps l,=1,+ksin 6y,
(3) and (4) are piecewise continuous, conservative, and in-
vertible. WhengB+# 1, the maps become noninvertible and 0,=6,+ Bl (12)

quasidissipative as explained in the first section.

One can easily verify that both the subma@s and(4)  wheren takes values 0, 1, 2,. If one periodic point is
are area preserving. Also their inverse maps can be deducéerated in(0,a], and another is located &&, 27] (the orbit
easily as can be addressed as an “orbit crossing bopdéne solution

satisfies
0n = 0n+1 - |n+1 (mOd 277) }

_ : fo<6,<a, (5 (B+1)(1,+ksin @) + Bksin(6, + 1, +ksin 6;) = 27,
Ih=lphe1 —ksiNG,
0= Ohes— Blos (mod 27) | by=nm+ 21, (13
. if a<6,<2mw. (6) 2
Ih=1lne1—ksing,
Please note that in order to find an inverse imégel ), the lp=11+ksin 6y,
principal for selecting Eq(5) or Eq. (6) depends on the
position 6, instead ofé,,;. This leads to the possibility of 0= 0, + Bly, (14)

f|ndr|]ngdty]:/fo(6n,lp) points for the S?méaf‘*lﬁ!”*?) ar::cordlngII dwheren takes values 0, 1, 2. .
to the di I(ta)rlc.ant_w:jversg t';”adpp'”g orm. T k'? 'ﬁ L iso—ca €9 In this article, we only discuss the situation where the
noninvertibility induced by discontinuity, which is the source parameters are fixed &s 0.3, 3=0.1, andw=1. The control

of the quasidissipative property. _ parameter is the amplitude of the oscillation of the disconti-
There are two discontinuity borderlindg6,1)|4-o} and nuity border, A. It is easy to deduce that the fixed point
{(6,1)]4=o} in Maps(3) and (4). The second one is a linear geseriped by Eq(7) exists only ifA=0, but it is unstable; the
line that can take values continuously in the areagyed point described by Eq8) always exists, and also is
{(8.)lse[7-amal} SO that the border image set forms a fat ynstable; both of the periodic orbits described by 3.

fractal. - _ _ (10), (11), and(12) do not exist; the only existing and stable
The fixed-point solutions of map8) and(4) are periodic orbit is that described by Eq4d.3) and(14). There
. are many such periodic orbits, described by differentn
I* = when 0< 6, < «, 7) the pha_se space. We shall study only the casd. The
0* = expression of the orbit can be solved as
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FIG. 3. The chaotic attractor a=0.289 49. It is drawn by
selecting evenly X5 initial values in the ared e (7—A,7+A),
| € (5.3,6.1, ignoring the first 300 000, and then recording 5000
iterations.

FIG. 2. The elliptic islands around the period-2 orbit. The ver-
tical linear line denoted byr represents the discontinuity borderline
{(6,1)]4=o} atA=0. The line denoted by—A, represents one of the

two end positions of the borderline AEA,, when it collides with ) ) » ) )
one of the elliptic points. derlines { (0,1)|4-o} changes its position in the region

o€ [7—A,7+A] continuously. Since the perio@) of the
function a=7+A cogwn) is an irrational number, the border

61=2.85210, should perform an ergodic motion in this rectangular area.
This is why one can expect that the image set forms a fat

l1=15.704 20, (15 fractal. This conclusion should be verified by some numeri-
cal proofs, which will be presented in the following.

6, = 3.431 08, First, if the image set is a fat fractal, when one selects
initial values evenly on the bordé¢n(é,1)|,-,} and computes

I,=5.789 84. (16) | orders of images from each initial value, one certainly finds

that the whole image set has a Hausdorff dimendien 2
(the dimension of the phase space where it is embedded
with a good enough computational resolution ane- o, |

— o0, To verify this conclusion numerically, we computed the
Hausdorff dimension of the fat strange set shown by Fig. 3
Sy using the traditional box-counting method. The phase

Figure 2 shows the “elliptic islands” around the periodic
points. It is drawn by evenly selecting #®5 initial values
in the areaf<[0,27], 1 €[5.3,6.7 (inside the basin of this
orbit), ignoring the first 30 iterations from each initial point,
and then recording 100 iterations. The picture shows that th
“elliptic island chain” is the attractor in part of phase Spacespace shown in the figure was divided into 40800
due to the fact that it attracts the iterations from all the initialsquares. We took the size of one square as the smallest scale
points. In the following sections we shall select diﬁerentl_ The number of points showing the strange set is about 100
suitable areas for init!al values for similar reasons and Shalﬂimes the number of squares. When we increase the scale, the
not explain them again. number of boxes occupied by the fractdl, showed a very

good linear line on the IhkIn N plane. The slope of the line

IIl. THE CRISIS was 2+5x 10 ' Therefore, the Hausdorff dimension is not
a good quantity to describe the border image set here. One
A. The fat strange set has to introduce a different quantity that is suitable for both
As can be understood by Fig. 2, the elliptic islandsthe t_hin and fat fractals. It is called the “fractal exponent”
become smaller and smaller with increasifgAll the el-  and is defined ag24-24
liptic orbits colliding with the oscillating border are de-
stroyed. Finally, the border collides with one of the periodic B= "mw (17)
points at A=A. (it can be analytically shown that é-0 In ¢ ’

0.289 49> A.>0.289 48. As a result, the regular motion to-

tally disappears. Numerical investigatiésee Fig. 3 shows whereé denotes the §calé,§ represents the coarse set of the

that a chaotic attractor suddenly emerges. This suddef@t fractal under (this means the remnant after wiping off

change can be addressed as a kind of crisis. all the holes larger thad), w(A,) represents the Lebesque
As stated in the first section, the set of forward images ofneasure ofA;, and u, the limit of w(A,) when¢—0, i.e.,

the discontinuity border forms the chaotic attractor. Figure 4uo=lims_ou(Ay). Figure 5 shows the computation of the

shows the first, second, 20th, 100th, and 1000th to 6000tfractal exponent for the fat strange set shown in Fig. 3. One

orders of images of the discontinuity borderlifiéd,1)|,-,}.  can see a good scaling-free region in the figure. The fractal

One can see that the border image splits and bends again aggponent is then obtained #s-0.414+0.006.

again during the iteration process, and gradually demon- When the fat fractaA, gradually changes to a thin one,

strates the form of a fat strange set. If the border wergtone one should find uliin=liM;_ou (A9)linin=0 [25,26. As is

two) fixed linear lings), the image set would have been awell known [25], in this case one findg(A,)=&=£Pr,

thin fractal. However, in the current system one of the borwhereD is the dimension of the space where the fractal is
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40 T T T T T T T FIG. 5. The computation of the fractal exponent of the fat
10 L5 20 25 30 35 40 45 50 strange set shown in Fig. 3. The largest valueta§ 0.0667. Its
0 smallest value is 0.0143,,=0.003 35. Bothu and ¢ have arbitrary
65 square or length units.
b . : .
(b) showing a linear time dependence, the phase space contrac-
tion rate does not influence the scaling exponent of crises
6.0 . and thus one can approximate the lifetime scaling law for a
crisis based only on the formula
e
1
(1) oc —, (18
5.5 . pA
whereA denotes the measure of the escaping hole, which is
the area of the elliptic islands in the current study, and
50 denotes the probability of visiting a unit area &1 In the
Y 25 3.0 35 40 present situation the area of the elliptic islands, which are

0 escaping holes, increases due to the fact that a lineajthiee
discontinuity borderling{ (8,1)|,-,}1, which should be tan-
FIG. 4. (a) The linear line 1 represents the first image of the gent to the islands all over the process, moves away from
discontinuity border{ (6,1)|,-,}. It is drawn by selecting evenly them asA becomes smaller. We have numerically verified
5000 initial values in the regiod=m+A, | € (4.5,7, and recording and confirmed the obvious conclusion
the first iteration from each of them. Two linear lines, denoted by 2, Ao _ AR 19
represent the second images of the border. The drawing method is (Ac— A", (19)
similar so we shall not explain it in the following. The small gray |f the strange set from which iterations escape via a leaking
segments represent the 20th images, and the small gray pieces refyle is a thin fractal, it has a zero measure. The part of the
resent the 100th images. They already roughly resemble the fajirange set insida is very uneven no matter how smallis.
strange set shown in Fig. 8b) The composition of 1000, 2000, gyally, one has to calculate the dependence of very uneven
3000, 4000, 5000, and 6000 order images of the discontinuity bor- on |A—Ac\ numerically. We shall discuss the reason further
g?r' g Ztedaﬁg hgste?]g:% sutrgllahrofor;nﬂt)?ntqhsfsct(r)?gg i'i)tnsgfwl:lail elow. However, in the current study, the strange set is a fat
9. 5, S y 10 show posttion Of SMal 4 -tal with a finite measure, we may prove that the part of
pieces. In order to compare with Fig. 3, all the computations are[ S .
. he strange set insid& is even whem\ is small enough and
performed with parameter value At0.289 49. . - .
make a further estimation on the scaling exponent based on
this fact.

embeddedD; denotes the Hausdoff dimension of the thin The “density” of a fractaF at a pointx can be defined as

fractal. In the current system, whén=0, the border does not 5
oscillate. It can be expressed asm. The fat fractal set [27]

changes to a thin one. We should figd-D;=2. This is the _ . aredF N B:(x))
second and most important proof for the fat strange set. We M= ly'ino aredB (x)) ' (20)

also numerically verified this conclusion. By using a similar

method, we computed the Hausdorff dimension of the fawvhereB,(x) is a closed disk with radiug and a center at,
strange set aA=0, which now transfers to a transient set, and area ) represents the measure of the set in the paren-
and obtained>;=1.226+0.016. The fractal exponent of the theses. It has been prov¢R7] that M=1 if xEF, and M

set is found to bg8;=0.77+0.02. So the results show a good=0 if x¢ F, whenF has an integer dimension, whiM is

agreement with the conclusigd+D;=2. smaller than 1 and depends on the Hausdorff dimensid¢h of
_ _ _ o _ if it is a thin fractal. The Hausdorff dimension of the thin
B. An analytical discussion of the lifetime scaling law fractal strange set should vary when the parameter changes.

We have reported a conclusion elsewhglg] that in a  That is why an estimation gf is difficult if we suppose that
guasidissipative system, due to the dissipative behaviat is proportional to the fractal densityl of the strange set.
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slope=0.27+0.01

3 5 3 2 0 8 % 4 2 0
In(A -A) In(A -A)
FIG. 6. This figure shows the numerically obtained relationship  FIG. 7. This figure shows the numerical results about the depen-
between the average lifetim{g) and the controlling parameter. dence ofu.—u on Ac—A. The method is as follows. For ea¢h
value, select evenly 100100 initial values in the aread
However, for the fat strange sBt When|A—Ac|H0, A al- e[0,27],1 €[5.3,6.1, record all the transient iteratioiithose be-

most always falls in a piece of the set which has a dimenSiOIT“Pre entering the eIIip_tic isla_nd,sand then use'the data for comput-
2,i.e.,AEF; thereforep=1 should be measured. That means™d the Hausdorif dimension of the transient set by the box-.
the visiting probability should be 100% as soon as iteratiorﬁ?;222?6Tr‘ztcr’géico:zO;ssfhg‘fn?aesajrfifvz:getrztngg;ﬂ?ﬁ*ﬁ:gﬂe n
(e{g)e :)Sntehecz:its;rﬁggetose(;[b\slgl:\?etr’:;]seCL?r?i(\:/Igrss{glnpat)r\l/f/je?rg\’/v eX(_)nly the measure values corresponding to six parameter values
. . were computed since the computation needs a lot of time. The
pressed by Eql) W'.th an extremely large scaling expongnt threshold value of the measure was takernugs0.003 86 wherA
v=2. As discussed in Ref28], a largery makes the chaotic _ 5 - 289492, It was obtained by considering the fact that the
transient phenomena somewhat easier to observe. Therefogg i, exponent of the set [8=0.414 atA=A,=0.289 492.A is

one can expect a superlong chaotic transient after the crisigimensionlessu. has arbitrary square units.

C. The numerical verification of the lifetime scaling law Figure 7 shows our numerical results about the depen-
. : ence ofu.—u on A.—A. It shows a power law:
Figure 6 shows our computational results for the average(cjj Mo~ ON A P
lifetime, by using the method (e — ) o (A, — A)70-270.01 (22)
" T Then we can reach agreement with the numerical result for
(7) = lim =1 , (21) the scaling exponent if we suggest a different formula for the
n—e N estimation of the lifetime scaling exponent:
wheren denotes the number of initial values evenly chosen o
in areade[2,4], 1 €[5.1,6.3 (heren=100x 100, and 7 (7)o —-. (23

. . . - A
denotes the number of iterations before entering the elliptic p

islands from initial valuea. The linear line in the figure rep-
resents the least squares fitting of the data. Its slope is the D. The strange repeller and its fractal exponent
exponent of the scaling law, which shows 1.72+0.04.

Our task now is finding an explanation of the difference
between the analytically predicted scaling exponen2 and

How to show a strange repeller in a figure has been a
research subject in nonlinear dynamics. In the current study
we use a rather simple method, the “single trajectory

the numerical result. We would like to make a guess. Al- o s .

though we obtain the conclusion that the probability of themethOd' which was suggested _by Télin 19{9]5]_ - Figure 8

. 4 L . shows a strange repeller that is drawn with the parameter
iterations visiting the escaping hole should be 100% as sooh

as the iteration enters the fat strange set, we may have t\éalue atA=0.20 in the following way: from a lot of initial

consider the probability of the iterations visiting the fat values (as many as possible; here the number is 1000
strange set since it does not occupy the whole phase space.

When the parametek progresses, the averaged lifetifi o2

" A=02

should be longer ifu, the measure of the strange set at pa- 601
rameter valueA, decreases since it takes a longer time for

iterations to enter the strange set. We suppose {hats 581
proportional to(u.—u) (uc is the measure at the crisis =

threshold. This variation influences the scaling exponent 1

only if the dimensionless parameter (u.—u)/ u¢, the ratio
of the measure’s change, obeys a power dependence on the
parameteA.—A. Usually it is impossible to make an analytic

54

52 ————— T 7T T+
22 24 26 28 30 32 34 36 38 40

discussion of this guess because the measure’s change sensi- 0
tively depends on the system function and parameters. We
have to verify it numerically. FIG. 8. The strange repeller At=0.2.
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of the system divide the range into two parts as shown in Fig.

1. The function is different in each part. One of the border-

lines is fixed; the other oscillates with a certain amplitude.
This mechanism makes the chaotic set of the borderline im-
age become a fat fractal. Due to the quasidissipative property
of the system, a zero-size elliptic island chain appears inside
the chaotic set at a threshold value of the control parameter.
The island chain gradually grows and serves as an escaping
B S S S s S A S S hole so that the chaotic set transfers to a transient set. The

In(A ~A+0.00026) characteristic of this crisis is an escape from a fat fractal set.

We have analytically and numerically shown that the scaling

FIG. 9. Variation of the fractal exponent of the strange exponent of the lifetime takes a value of 1.73. The method

repeller. for the estimation of the exponent is unique.

. o . The crisis reported in this paper is only an example to
> 1000, selecting th_ose that show lifetimes 15 times Iongershow that a kind of crisis induced by an escape from a fat
than the averaged lifetimér), and then recording the tran- ’ ; .

. hich started from them but ianoring the first 20% tc)strange set can be observed, and _thls can display a dl_fferent
suengeﬂ:/v “ f the initial d.(:j][. R gdth last 40% mechanism to produce supertransients. The key point is that
?VO' 'de rr;e_morty ot the "1' |a}[hcon ! lonttant ethas li t_° the strange repeller, which appears after such a crisis, is also
10 avoid getting too near to the new attractor, the €llIPUC, ot fractal. Therefore the iterations have a much larger
islands. The recorded middle part of the transient can a

imatelv show the st I lained in th probability than that in the thin fractal case to fall in the
proximately show the Strange repetier as expiained n icinity of the strange repeller. We believe there should be
first section. We compute the fractal exponegt®f some

" more mechanisms to realize this kind of crisis, not only in
strange repellers in the parameter ramge [0.055,0.27% % y

h h - h ion { h wo-dimensional discontinuous and noninvertible maps.
and show the data in Fig. 9. In the computation for each Oljsq the mechanism reported in this paper certainly can be
them, the smallest value @fis 0.0143, the largest value is

. observed in more physical systems, which can show an os-
0.0667, and 55 values ¢fin total are evenly taken between

. . cillation of a discontinuous borderline and thus form a fat
them. For different values o, , takes different values as gyange set. The electronic relaxation oscillator reported in

well. They are uo(a=0059=0.001 13; 110(a=0.19=0.00145;  Retf 9] and the so-called kicked billiard modg29] might
Mo(a=0.2=0.00185;  o(a=021083=0.00218;  moa-0275  serve as other candidates. So we believe that the mechanism
=0.003 15. The results show that the fractal exponents arfr producing supertransients is common.

increasing with decreasingy with the rule

B=-(0.0955 + 0.0018n(A,— A+0.000 26. (24)

These results demonstrate that the strange repellers are also
fat fractals. This can explain the superlong transidimager This study was supported by the National Natural Science
than 6x 10°) observed whefA-A— 0. Obviously the su- Foundation of China under Grant No. 10275053. The authors
pertransients occur in a portion of the parameter space that igould like to thank Professor Kangjie Shi at Northwest Uni-
much larger than what can be observed after a crisis inducegkrsity, China for very helpful discussion and suggestions.
by an escape from a thin strange set. Also, the manuscript was completed in the Department of
Computational Science, National University of Singapore.
D.-R.H. wants to express his gratitude to Professor K. Chen
The system discussed in this article is described by a twofor providing advanced research facilities and valuable finan-
dimensional mapping. Two linear lines in the definition rangecial support from Grant No. R-151-000-032-112.
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slope=0.0955+0.0015
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